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ABSTRACT

This thesis examines the nature of laminar flows of viscous

fluids in porous, elastic channels. It is shown that for a wide

range of such flows the importance of inertia effects is governed

by the modified inlet axial Reynolds number. In particular, when

this Reynolds number is small compared to unity, inertia effects

can be neglected.

The significance of two other parameters important to these

flows is also discussed. One, the ratio of a Reynolds number for

the flow through the porous walls to the modified inlet axial Rey-

nolds number, describes the degree to which wall porosity affects

the axial flow. The other, a combination of this Reynolds number

ratio, the ratio of the characteristic normal (vertical) wall dis-

placement to the unstressed channel half-thlckness, and the Strouhal

number, governs the relative Importance, in unsteady flows, of nor-

mal wall unsteadiness andwall porosity.

The mathematical model chosen for this study is based on the

thln-film blood flow observed in parallel plateartificlal kidneys.

The channel walls, however, are taken to be much more rigid than

those found at present. Solutions are obtained for the axial and

normal velocity components, the fluidpressure, and the normal wall

displacement. The effects onthese solutions of varying the signi-

ficant dimensionless parametersgovernlng the flown field and the

normal wall displacement are discussed.
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CHAPTER I

INTRODUCTION

One of the most exciting challenges to engineering and medicine

today is the development of highly efficient, low-cost artificial

kidneys, Present artificial kidneys are themselves a remarkable

achievement. However, further improvements in these complex devices

are mandatory if artificial kidney treatment is ever to become inex-

pensive enough as to be widely available. Current costs, for example,

are such that only a relatively few from the thousands in this coun-

try each year who need such treatment can be helped. These further

improvements can best come about through the combined efforts of

specialists in physical and biological science flelds,

1.1 Present Artificial Kidneys and Recent Research Trends.

Artificial kidney techniques have made astounding progress

over the last decade, Sufferers from chronic renal(kidney) failure,

for instance, have now been kept alive for periods exceeding five

years (17). Artificial kidneys have also been used in the treatment

of certain types of poisoning (29'9). The way for much of the re-

search responsible for this progress has been led by research teams

under the direction of Kolff at the Cleveland Clinic and Scribner at

the University of Washington School of Medicine° Many of the esti-

mated 100,000 people each year who succumb to illnesses related to

renal failure (29) now have a new chance for lifeo

An artificial kidney duplicates two functions of a natural

-1-
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kidney: it maintains the body's water and electrolytic balances; it

also removes from the bloodstream the nitrogenous end-products of

protein metabolism, among which are urea and creatinine (29'9).

Unlike the natural kidney, however, the artificial device re-

moves molecules of these blood impurities by means of dlalysis, the

membrane separative process based on dlffusional transport of mole-

cules throughpolymeric membranes which separate two fluids. (The

mechanism of the natural kidney is much more complicated). In an

artificial kidney the Impurlties.diffuse from theblood as it flows

through channels bounded by cellophane membranes. In passing through

the cellophane these impurities then enter other channels filled

with a fluid known as "dialysate". (See Figure 1.) Inasmuch as the

dialysate itself is flowing, it serves to remove continuously the

impurities from the neighborhood of the membranes. Thedriving

force for the diffusional transport, of course, is then a perpetuated

concentration gradient of the impurities across the cellophane (29'13)

In order to avoid the undesirable transport of such larger molecules

in the blood as proteins, however, the actual cellophane membranes

used are "selectively permeable"; they effectively transport mole-

cules only of a certain maximum size.

Excess water is removed from the blood, on the other hand, by

means of ultrafiltratlon, the process by which pure liquid is ex-

tracted from a solution or suspension using, again_asemi-permeable

membrane. The driving force for the extraction, however, is a fluld

pressure gradient across the membrane. In an artificial kidney such

a pressure gradient is caused by the excess of blood over dlalysate
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pressure. This pressure gradient, also, is sometlmesaugmented by

the imposition of anosmotlc pressure gradient. Such a pressure

gradient can be established simply by adding glucose to the dlalysate.

Interconnecting tubes join the blood flow channelwlth the

bloodstream. One tube passes_from an artery in anarm or leg to the

channel; another, from the channel to a vein in the same arm or leg

(29). A pump may or may not be required to drive the blood.

Two artificial kidney designsare in widespread use today: the

Kolff, or "twin-coil,', and the Kill, or "parallel plate ''(29'15).

These are pictured in Figures 2 and 3. In the flrst design, blood

flows throughtwo ten-meter lengths of cellophanetublng wrapped

together lnseverallayersabout a ten-lnch diameter plastic spool.

Fiberglass screening, coiled with the tubing, provides spacing

between_the tubing layers_ for the flow of dialysate. A_blood pump

is used. One chief advantage _of the design is that it is commer-

cially available.ln assembled, sterilized form.

In the second kidney type, however, blood passes through two

one-meter lengths of cellophane tubing held nearly flat between

closely-spaced, parallelribbed plates. Dialysate flows between

the tublng and the rlbbed plates in the spaces provlded by the ribs.

(See Figure 4.) One key advantage of this design is that it re-

quires no blood pump; the arterlal-venous pressure gradlent is

sufficient to drive the flow. Because of thls advantageand because

of the superlorJtheoretlcal efficiency of the parallel plate geome-

try (15) , •the Kiil-typa kidney will be emphasized inthe study herein.
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In recent years a numberofnew or modified artificial kidney

designs have been proposed and tested. However, all aim towards

increased efficiency at lowest possible cost (29'9). This is because

present kidney machines, cumbersomeand expensive to operate and

maintain, are not available to manywho need them. For example, the

cost of kidney treatment today ranges from $5000 to $7500(9)_ The

expenses of semi-weekly hospital visits, kidney machine maintenance,

and regular care by medical personnel contribute to this high fig-

ure. It has been obvious to researchers for sometlme that the so-

lution to this state of affairs is the development of_an artificial

kidney so efficient, reliable, easy to assemble and operate, and yet

inexpensive, as to require a minimumof medical attention (29'9)"

Ultimately such a device might be portable - perhaps evenable to be

worn on the person- and able to be operated safely in the home.(29)

1.2 The Cha!len_e. to the En_ineerlng Sclences of Fluld and Solid

Mechanics°

It is also clear that the evolution of such an artlflclal kidney

can be_most swlftly brought about by bringing to bear on the problems

involved the talents of engineers as well as medical people. More-

over, there is a particular challenge to workers in the englneering

areas of fluld and solid mechanics. Much of the operation of an

artificial kidney, after all, involves a rather complex flow of

fluids. For instance, in such a device blood issues as a thin film

between parallel, flexible and somewhat porous membranes. Also,

the interconnecting tubes which lead into and out of the blood flow

channel cause flow divergence effects at the channel inlet and con-
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vergence effects at the outlet. And, in the case of Kill-type

kidneys, the blood flow, driven as it is by the arterial-venous

pressure gradient, is in general pulsatile. Anunderstanding of

this complex flow is important to optimal artificial kidney design.

Indeed, a number of artificial kidney phenomena areconnected

with the flow. Red cell sedimentation in the blood channel is one.

(Blood is a suspension of several types of partlcles, including red

cells, in a watery plasma°) However, Lwhile. this sedimentation can

pose a very real problem in practice, it canbe controlled by keep-

ing local flow velocities everywhere abovesomearbitrary minimum

(29,6)

Secondly, membrane relaxation and sagging(see Figure 4) causes

irregularities inthe flow pattern (5). This relaxationand sagging,

brought about by the action of the blood-dialysate pressure differ-

ence, is characteristic ofpolymeric membranematerials_ like cello-

phane whenwet, Moreover, it diminishes the transfer of undesirable

excesses of blood solutes and increases the blood flow channel vol-

umeo This volume should beminimized in order tomakeblood priming

unnecessary (26) .

Cole, Pollardand Murray (7) have measuredthe effects of such

membrane distentions on the blood volume. In studies_on a modified

Kill kidney they report that there exists no linear_ relationship

between this volume and the nominal membrane separation distance.

Instead, the channel volume was found to be muchmore dependent on

the fluid pressure difference across the membranes. Because small

membrane distentions can significantly affect the channel volume if
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the membrane separation distanceis itself small, this conclusion

should not be surprising.

Moreover, membrane distentions detract from the efficiency of

parallel platekidneys. According tO Leonard (15), for. example, "the

flatplate geometry rapidly_degeneratesin performanceasvery small

dimensional variationsare introduced .... "

At least three research efforts havebeen directed towards im-

proving parallel plate kidney performance and reduclngblood flow

channel volume by minimizing membrane distentions, First, BluenLle

and Leonard(16)have_ tested a kidney having "cones" molded onto its

exterior plates. (See Figure 5). The cones server:in,.part to sup-

port the kidney membranes at a number of points on: the dialysate

side. The also increase membranetransfer_by, indncing some mixing

of the dialysate.

Secondly, Sachs. and. Funck'Bretano(26)have tested a kidney model

having membranes to which lateral tension is applied. The applica-

tion of such tension seems to be intended to offset the effects of

membrane sag. Decreased blood volumeand increased dialysance (a

measure of favorable..kidney:performance) areobserved.

.More recently, Babband Grimsrud(!)havesought_to_make the blood

film thickness:more:_nearlyuniform by using nickelfoamtosupport

themembrane at:all points_on-the_dialysate:side_ The_nickel foam,

which can.be machined, to an extremely level_surface, completely fills

the dialysate flow space. Since the foam is porous, it allows the

dialysate as well as:theexcesses_of water and.bloodsolutes to pass

freely. It even causes_some mixing of the dialysate, as do the
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cones of Leonard and Bluemle. Babb and Grimsrud believe the use of

this foam is superior to the application of tension to the kidney

membranes in that such tension cannot be maintained indefinitely in

view of membrane relaxation. Again, decreased blood volume (and

film thickness) andlmproveddlalysance is reported.

Some special consideration is due the removal of excess water

in an artificial kidney. This process, known as ultrafiltratlon

depends on both membrane porosity and the local fluid pressure gra-

dient across the membranes. At present, it appears that ultrafil-

tratlon affects the bloodflow_only sllghtly. However, the converse

need not be true. For instance, the local fluid pressure gradient

across themembranes- the drivlng force for ultrafiltration - can

depend on position along the flow channel. Furthermore, it may be

true in some future artificial kidneys that membrane, poroslty does

significantlyaffect the blood flow. After all, aslSparks(29)has

stated, membranes much more permeablethan the_ cellophane ones curr-

ently used are requlred if kidneys are ever to be developed having

larger fluxes for blood solutes and water. Hence, the removal of

water from the blood flow canbe of. consequence.

Outside the realmofresearchmotivated by_artiflcial kidney

development, workhasbeen conducted on porous, rigid_channel and

non-porous, elastic tube_flows. Properly interpreted, this work

should_havebearlngon kldney design. In the case of porous, rigid

channel flow, Berman(2)has obtalneda perturbation solution for the

flow for small, constant suction or blowing at the channel walls°
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Sellars (28) ,Yuan(39) ,Terrill (31'32) , and Terrill and Shrestha (33)

have extended this work to encompass the cases of large suction and

blowing at the walls and mixed suction and blowing. In addition,

equations similar to Berman's have been used by Eckert, Donoughe, and

Moore(43)in correlating flows in porous channels with flows_ in porous

tubes and in boundary layers over porous surfaces, and_ by Wageman

and Guevara(44)in investigating experimentally flowsln porous tubes°

Knight and Mclnteer(45)have_ examinmd the analytical _behavlor of

Berman' s equations.

As for flows in non,porous elastic tubes (thin-walled), Morgan

(19)has studied the steady, fully-developed case° •The_transmlssion

of small amplitude,, large wavelength pressure waves in these tubes

has been examined by Morganland Kiely(21)and Morgan and Ferrante (20).

Kuchar and Ostrach(14)have investigated axial flow development.

Still further work has been carried out by Womersley (38) Karreman

(12) and Sacks and Abbott (24'25)

It is the purposelof this analysis to investigate the nature of

the blood flow in an artificial kidney_ However, only two character-

istics of the flow- those judged robe of the greatest immediate

importance -will be taken intoaccount herein: wall porosity and

wall elasticity. Further, the latter characteristic will be accoun-

ted.for in a restricted sense in that the kidney membranes will be

assumed to be supported by relatively rigid porous material. The

particular physical situations for which the analysis applies and

the limitations of this study will be discussed in the following

two chapters.



CHAPTERII

Characteristics of the Physical System to be Studied

2.1 The Type of Artificial Kidney Assumed.

This analysis will be applicable to artlflcial kidneys of the

paralled plate type whose membranes are supported at all points on

the dlalysate side by relatively rigidporous material. The porous

material, moreover, will be such that it presents a level surface

to the membranes and completely fills the dialysate flow space.

(See Figure 6.) The extent of porosity will be such that resistance

to water and blood solute transfer is essentially membrane resistance.

It is immediatelyapparentthat such kidneys are very similar

to the one proposed by Babb and Grlmsrud(!)_ employing membrane

supports made from nickel foam. Whi-lerelatively rigid porous

material is certainly not used to back membranes in present kidneys,

there are, nevertheless, valid reasons for studying kidneys which

make use of such material. First, it is much easier to examine a

kidney blood flow bounded by membraneshaving relatively rigid

backlngmaterlal than one bounded by membranessubject to relaxation

and sagging. To do otherwise would overly complicate the analysis

herelnby the introduction of a complex flow geometry. At the same

time, resultsconcernlng the flow should still hold at least quali-

tatively for present kidneys.

Secondly_ it appears likely that future kidney designs will

incorporatesome of the membrane,supportideaskbelngworked on today.

If indeed_this is the case_ the flow results of this analysis will

-9-
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become quantitatively correct. Further, the_analysls should predict

accurately the blood channel wall motions whenrelatively rigid,

porous backing is used.

Some changes in the terminology of this study are now in order.

Henceforth, the membranes,_porous backingmaterlal,.and the non-

-porous external kidney plates'-will_collectlvely':be_referred to as

the channel "walls." "Deflections" of these:walls will be spoken of

instead of membrane sagor:relaxatlon.

In most other respects, the kidney of this analysis will be

like the Kill in wldespread_use_ It will have similar flow channel

dimensions (20 cm.x111 cm,), twopairs of flow channels with such

dimensions in parallel, and_acomparabletotal membrane area (1.8m2).

These and further details of theKill are=given bylSparks (29) and

Sachs andFunck:Bretano (26) .

2_2 TheRheology of Blood.

Blood, the fluid of thls-flc_analysls, is neither homogeneous

nor Newtonlan. Instead, it_:is_asuspenslon of three kinds of par-

ticles in a watery plasma_:i red cells -(erythrocytes)_ white cells

(leukocytes), and platelets-(thrombocytes). However, the red cells,

present in the concentratlonof 5xi06 partlcles per cub_ccentimeter,

comprlsethe:great:bulk_of;thesuspended_part±cles, Shaped like

biconcave disks, somewhat_deformahleandapproxlmately eight microns

in diameterand two, mlcrons thlck_ these partlcles-constltute 40 to

48 percent, by volmne, of::normalwhole blood.
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Accordingly, the apparent viscosity of blood, a key fluid

property, can depend on several factors. These include the hemato-

crit, or red cell concentration in percent by volume, the shear rate,

and the size of the vessel or channel in which flow takes place. Of

these factors, the first, the hematocrit, can be affected in the

flow of this study by red cell sedimentation in the flow channel.

However, Charm (6) has observed that such sedimentation is important

only for relatively low shear rates - shear rates on the order of

0.I to 1.0 second -l. In addition, thared cell concentration can

be increased by the outflow of watery plasma through the porous

channel walls; red cells do not take part in this outflow.

With regard to the dependence of blood viscosity on the shear

rate, the viscosity of blood decreases as the shear rate is in-

creased at low shear rates, but becomes virtually constant at shear

rates above approximately i00 seconds' I. Thus, for practical pur-

poses blood is Newtonian above this value of shear rate.

The third factor - vessel or channel size - assumes importance

when the smallest characteristic length in the flow, such as channel

height, is no longer large compared to the diameter of a red cell.

Lindquist(10)Fahraeusand , for example, have shown that in tubes

having dlameterssmallerthan twenty to thirty red cell diameters

(about 0.016 to 0.024 centimeters), the apparent viscosity of blood

is less than that inlarger tubes. And since the nominal blood

film thickness in Kill-type artificial kidneys ranges from one to a

few hundredths of a centimeter, it would seem that channel size
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could be important.

A more complete discussion of the rheology of blood is given

by Merrill and Wells (18) and by Rudinger(23).

2.3 The Drivin_ Force for the Flow.

Since artificial kidneys of the parallelplate typerequire

no blood pump, the blood flow in these kidneys is driven entirely

by the arterial-venouspressuregradient. In general, this pressure

gradient can be considered to be the superposition of a steady

(through-flow) part and a time-dependent part (35). This latter

contribution is periodic and represents the pulsatileportion of

blood flow. A similar two-part pressure gradient will be assumed

to drive the flow of this study.

It should be noted, however, that inasmuch as the arterial-

venous pressure gradient must drive the flow through interconnecting

tubes as well as the blood flow channel, only a portion of this

pressure gradient actually drives the flow in the channel. Some

pressure losses must occur in theinterconnecting tubes (II).

The driving forces for the channel wall motions, on the other

hand, are the blood and dialysate viscous andnormal stresses at

the walls. In particular, the net normal stress on the walls is

largely the blood-dialysate pressure difference. (Velocity gradients

at the walls can afford a small contribution.) Like the pressure

gradient, this pressure difference consists of steady and pulsatile
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parts. On the other hand, thepressure difference can change inde-

pendently of the pressure gradient;_that is, the mean pressure levels

at the blood flow channel.inlet.and outlet can rise simultaneously

as the body'sblood, pressure rises,_thereby increasingthe pressure

difference across the.porous channelwalls, while, not affecting the

axial pressure gradient.

The dialysate flow may be driven by.a.pump or by gravity (29).

It willbe considered steady.
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ASSUMPTIONS

The thin-film blood flow boundedby, porous elastic walls en-

countered in artificial, kidney design, is. of great complexity and

notwell understood, Consequently, in_this flow. analysis a number

of assumptions andosimplifications_must..bemade, These assumptions

and simpllfications, however, should be_such_as to retain the salient

features of the physical system,,. Withthis.lnmlnd_.the mathematical

model for the flow willbe_ as follows:

i. Blood willbe assumed:to be a. homogeneous, incompressible fluid

havinga constant, viscoslty.

This assumption implies, that. the. effects ofred cell sedi-

mentation and the outflow, of, watery.plasma on the red cell

concentration and hence_the, blood.viscosity_willbe neglected.

Furthermore, these_effectswill, not be:appreclable provided

the shear rate is everywhere, above, about li0second -I (6) and

provided the total, outflow..through, theporous::walls_is small

compared to. the blood, channel, inflow.

The assumption also. implies, that. the: effects of channel

size on theviscosity of bloodwillnot be considered. Although

these effects arapossibly, signlficant, a properaccounting of

them would add an undue, complication, to, the present analysis.

2. Blood will be taken_ to be Newtonian.

This assumption is.a good, one,.if, the shear rate is every-

where above about I00 seconds -I. _ee section 2.2.)

- 14 -
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(Hence, the minimum shear rate for which blood can be considered

Newtonian is much higherthan the minimum shear rate for which

red cell sedimentation is negligible.)

3. The effects of flow divergenceand convergence from and to

interconnecting tubeswillbe neglected.

4. The flow will be laminar.

5. Effects of the gravitational body force will be neglected.

6. The flow at the channellnlet will be taken to be fully-devel-

oped.

This assumption is justified on the grounds that the fluid

at the channel inlethasalready passed through several meters

of slender interconnecting, tubing.

On the other hand, by no means, does the assumption imply

that the flow in the channelitself is necessarily fully-

developed. Flow through the porous wall can still be of such

extent that axial inertia effectsbecomeimportant. For

example, large suction at the walls can lead to a large decrease

in the axial mass flow andhencesigniflcant flow deceleration.

7. Mass transfer will have a negligible effect on the blood and

dialysate volumes.

8. In the unstressed situation (no flow; no blood-dialysate

pressure difference ) the spacingbetweenthe porous channel

walls will be uniform and small compared to channel length

and width.

9. The porous materlalbacking the membranes and the non-porous



- 16 -

i0.

exterior plates with which this material is in contact are

together of such high flexural rigidity as to keep channel wall

deflections small compared to the unstressed channel half-

thickness and to nullify the effects of membranerelaxation

and sagging.

Oneconsequenceof this assumption is that the rigidity

of the walls will be essentially that of the porous backing

and non-porous exterior plates, the rigidities of the membranes

themselves being negligible in comparison.

In addition, the smallness of channel wall deflections

comparedto the unstressed channel halfethickness implies the

smallness of channel walldeflectionscompared to wall (porous

backing and exterior plate) thickness. This is because the

wall thickness can reasonably be expected to be at least as

large as the unstressed channel half-thickness (a few hundredths

of a centimeter.) More important, for deflections small com-

pared to wall thickness a linear theory of elasticity will be

applicable.

A meansfor estimating the wall flexura_rigidity required

to ensure sufficiently small deflections is given in Appendix B.

Although the wall thickness is at least as large as the

unstressed channel half-thickness, it will still be small

compared to the wall lengthandwidth. Moreover, the wall

thickness will be uniform and constant.

Accordingly, thin-platetheory can be used to describe the
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wall motions.

ii. The channel wallswill be conslderedpurely elastic and

isotropic. Young's modulus and Poisson's ratio will be con-

stants.

12. The membranes will be of uniformpermeability.

This assumption does not imply that the velocity of flow

through theporous walls need as aresult be constant. In

general, this velocity can varywlth position along the channel

since it depends on the difference_in the normal fluld stresses

acting on the membranes on the blood_and_dialysatesides. (The

difference in the normal fluid stresses can be a function of

position alongthe channel.)

13. The channel walls willbe slmply-supported at the edges.

At the edges the wall displacement, therefore, is fixed

and the bending moment is zero.

14. The sidewalls, the wallswhich span the membrane separa-

ration distance will be perfectly rigid and non-porous.

15. The dialysate flow will be in a direction opposite to that

of the blood flow; that is, a countercurrent flow situation

exists.

This is inagreement with what is foundin actual kidneys.

16. The volume of the dialysate flow region will be large

enough in comparison with that of the blood that the dialysate

flow is little affected by membrane porosity.

17. The dialysate flow will befully-developedat the dialsate
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flow inlet.

Together with the preceeding one, thisassumption indi-

cates that the dialysate flow will be everywhere:fully-devel-

oped.

18, Viscousshear forcesactingon the_.porous_walls caused

by the dialysate flowwill be of the same_order:of magnitude

as,:or smaller_than_ vlscous shear forces acting=on these walls

caused by the blood flow.

In brief, it is felt that themathematical model set forth by

these assumptions will_adequately, represent the essential aspects

of the flow in a parallel plate artlficlal kidney blood channel

away from the inlet and_outlet. (Near the inlet and outlet the

effeets ofchannel_dlvergenceand-convergence become important.)

Themodel_should be particularly good, moreover, for the physlcal

situation inwhichthe kidney membranes-aresupported-byrelatlvely

_rigld porous material at all points on, the dialysate:side. In this

instance themodel will accurately descrlbethe motions of the

channel walls-motions coupled to'the'flow._Particular care must be

taken, however, that the-assmnptlons-concerningtheconstant visco-

sity and the Newtonian_!nature_of_blood be valid: _theratio of the

total outflow through _the :porous-walls to _the channel inflow

should be small_ and the_shear rate-should everywhere be above

-1
100 seconds .



CHAPTER IV

Basic Equations and Boundary Conditions for the System

Because of the parallel plategeometryof the artificial kidney

blood flow channel being studied, usewill be made of a rectangular

Cartesian coordinate system. The origln of the coordinate system

will be located midway between theparallelmembrane surfaces and

midway between the side walls at the inlet_cross-section. The

x - coordinate denotes the longitudinal, or:axlal direction; the y -

coordinate, the spanwise direction; the z - coordinate, the direction

normal to the membranesurfaces, or normal direction. Figure 7

illustrates the coordinate system.

4.1 The FloyEquations.

The equations describlng_ tha flow are expressions of two
<

physical laws : the local conservation of fluid mass and the local

balance between forces applied to the fluid and the resultant

change in its momentmn. The first• of these laws: is stated by the

continuity equation. In Cartesian coordinates and for an incom-

pressible fluid this equation can be written

____u+ _v _-Ew --0 4.1
_x _ + _z ,

where u, v and w are the components of the fluid velocity vector in

the x, y and z - directions, respectively.

- 19 -
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For a Newtonian fluid the second of these laws is stated by the

Navier-Stokes, or fluid momentum, equations. These equations can

be given as follows for a fluid of constant density and viscosity

subject to no appliedbody forces:

_u + _u _u _u
_t u_ + _ + _ =

1

_f
_P (_2u _2u _I

_y2 _z/

___v + _v _v _v
_t Uu_x + V_y + Ww_ z =

l _P [__2v _2v _2v_
-of _'; +_ _--_"+ -- +_y2 -_/r

/

-- -- v _w Bw_w + u _w + + =
3t u_ _Ty _

_y_--_2w + _2.--.--_wI _P + _2w_

4.2

where P is the static pressure measured from some reference level ,

is the fluid density, and v denotes the fluid kinematic viscosity.Pf

Equations 4.2 are the local scalar equations of motion for the fluid.

Detailed derivations anddiscussions of the continuity and

Navier-Stokes equations are given by Schlichting (27) and Bird,
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Stewart and Lightfoot (4) .

4.2 The Channel Wall Equations.

The equations describing the wall, motions expressNewton's law

in the three coordinate directions and-can be obtained from the

following thin.plate equations written in terms-of the coordinate

system of Figure 7:

aN aN

xy + qxax + ay
=0

aN aN

xy + _ + qYax ay
=0

a2n a2n + 2N a2n
D V4n = qz + N _ + N

x 3x 2 Y 8y2 xy 8x3y

-qx _x -qy -_y ' 4.3

where q is the component of plate (or wall) displacement in the

normal direction (see Figure 8) and where N , N and N the
x y xy'

magnitudes per unit length of the forces acting in the middle plane

of the plate, are functions of r and s, the axial and spanwise com-

ponents of plate (or wall) displacement, respectively, qx and qy

denote the two components of thetangential loading per unit area

(dimensions of pressure) of the middle plane:of the plate, while

qz denotes the normal loading per unit area. D is the plate
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flexural rigidity, defined as

D

E m 3

12 (I - o2)
4.4

where E is Young's modulus;

thickness.

o, Poisson's ratio; and m, wall

In particular, for the physical system under study the quan-

titieslNx, Ny, Nxy _ qx' and qy are as follows

E m I_xr B_)Nx -- _ +c;

'!
N = Em Bs +q
y 1 -o-T

/

= E m 'Dr 8_iNxy, 2 ( leg ) (_y, + 4°5

/

_ _u 3w - Pm --'T
qx P + _x , _t + qxD

. Iqy -_ _z + _ :* 8t 2 + qyD

qz = - 2p _z , _t 2

4°6

where _ is the dynamic viscosity of blood; 0, the wall density;

and qxD and qyh , the components of the contribution to the tan-

gential loading due to the dialysate flow. The quantities marked

with an asterisk are to be evaluated at the channel walls; that is,



- 23-

they are to be evaluated at

Z= _h+n

But because plata (or wall) displacements are assumed small compared

to the unstressed channel half-thickness, they can with the intro-

duction of little error be evaluated instead at

Z" *h.

Substitution of equations 4.5 and 4.6 into equations 4.3, then,

81ves the equations for the wall motions:

- _ + _x --" qxD
,, , _t 2

+

" U + _y.

D V_n "

x_y +

. om_2S+
, _t z qyD

-0

+ [_/_ol:_ + _)s _)2...!..n_x_)y

/

E m #¢_s
+ 0
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+ _u + _x , _t 2--- qxD _x

+I_;_ _v + _ + pm 32s qy _y
_Y , _t 2

4.7

A more detailed derivation and discussion of equations 4.3

and 4.5 is given by Timoshenko and Woinowsky - Krieger (34) , Wang (37)

and Reissner (22). Equations 4.6 follow from the definition of the

fluid stress tensor (27'4) and the use of d'Alembert's principle (30).

4.3 The Boundary Conditions.

A complete statement of the mathematical problem yet requires

the specification of a number of boundary conditions. In the first

place, because fluid is lost through the porous walls, the energy

needed at successive channel positions to drive the flow decreases.

The axial pressure gradient must then diminish with position along

the channel, implying that the flow is not independent of the axial

coordinate and hence not fully-developed in the channel. Hence,

either the inlet velocity profile or the inlet axial pressure

gradient must be specified. If the latter is considered to be the

"driving force" for the flow, one flow boundary condition will be
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___P
I = 8 cos (n _t)

_Xx=0 =i

+ bn sin (n_t_ _ 4.8

where 8 is a negative constant representing that portion of the

entrance axial pressure gradient associated with the steady part of

the flow. The pulsatile, tlme-dependent portion is in the form of

the "Fourier polynomial," where the a and b are constants assumed
n n

known and _ is the angular frequency of the basic periodic oscilla-

tion. It can be shown that any continuous periodic function can be

approximated by such a finite Fourier polynomial. In fact, the

approximation will be the "best" one in the mean square sense.

(See, for instance, Courant and Hilbert_ 8) pp_ 68 - 69.)

The constant B in equation 4.8, further, can be expressed in

terms of measurable quantities. To begin with, the flow at the

inlet cross-section has been assumed to be fully-developed. The

steady portion of this flow, moreover, because of the smallness of

the unstressed channel half-thickness compared to channel width, is

approximately a two-dimenslonal Poiseuille flow. (All flow

properties and characteristics are essentially independent of the

spanwise coordinate over the bulk of the inlet.) And for such an

inlet flow the following relation is valid

fQo_ 1
4.9

4 _ £h 3 / ,
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where Qo is the steady part of the axial flow rate at the inlet and

where £ is the channel half-wldth.

Next, the inlet pressure must be stated. As Kuchar and Ostrach
(14)

point out, the flow situation in an elastic channel is quite

different from that in a rigid one. In the rigid channel case,

pressure gradients, as the driving forces for the flow, are of

direct interest. However, in elastic channel flow, pressure levels,

upon which the channel wall motions depend, are of importance as well.

Thus, while the inlet pressure is not of immediate concern in rigid

channel flow and need not be stated so long as the axial pressure

drop is known, this pressure must be given in the problem under

consideration. This pressure, taken to be uniform over the inlet

cross-section, will be as follows:

P =P + l

x--0 o nn--i

cos (n fl t)

+ d sin (n fl t) l_ 4.10

where P is that portion of the inlet pressure level due to the
o

steady part of the flow. The c and d are constants assumed known.
n n

Other conditions which must be specified are the no-sllp

condition at the walls and the porous channel condition. The first

of these is that the components of fluid velocity in the axial and

spanwise directions, evaluated at the channel walls, must be equal

to the axial and spanwise components, respectively, of the wall
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velocity. The second of these is that the normal componentof fluid

velocity, evaluated at the channel walls, must be equal to the sum

of the velocity of flow through the porous walls and the normal

component of wall velocity. The conditions are as follows:

I __xru , = _t 4.11

___Es
vl, m _t 4.12

w I, ffi ±w + ___p.np _t , 4.13

where w is the local velocity of flow through the porous walls and
P

where the asterisks denote evaluation at the channel walls in the

manner described in Section 4.2.

In general, the local velocity of flow through the porous walls,

w , can be considered to be proportional to the difference between
P

the blood and dialysate normal fluid stresses acting on the membranes

(29,13)
• It can also, however, have a contribution due to an osmotic

pressure difference across the membranes (29'13) . Consequently,

W = - _ - 2_ _--
P J- . + APo i

4.14

The constant of proportionality --_ is the ratio of membrane perme-

ability _ to the product of membrane thickness m'a AP is the os-
os

motic pressure difference,
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considered in this study a constant. PD denotes the dialysate pres-

sure. Because the dialysate flow is assumedto be fully-developed

and countercurrent, this pressure can be taken to be

PD=PDi-(L-x)(_), 4.15

where PDi is the pressure level at the dialysate inlet; PD' the

dialysate pressure drop along the channel length; and L, the channel

length itself.

As for the boundary conditions:on the wall motions, the channel

walls have been assumedto be simply supported (no bendlng moment)

at the edges. This assumption gives the conditions

nI ffi 0 4.16
e

@N I = 0 , 4.17
e

where N is the direction normal to the wall edges and where the sub-

script "e" denotes "at the edges." Also, if the walls are under no

tension when not deformed in the normal dlrection and if the edges

are not deformed when thewalls are deformed, the conditions on the

axial and spanwise components of wall displacement can be given as

= 0 4.18
rle

Sle = 0 4.19

Although an unsteady problem is being considered, initial con-

ditions are not required, This'is because the unsteadiness is in

the form of a periodic oscillation and thus involves no transients.



- 29 -

In the special case of steady flow, the boundary conditions on

the fluid pressure and velocity componentsbecome

x=0
= B 4.20

x=O o
4.21

=0
4.22

v I = 0
, 4.23

i = +WW
I, p 4.24

This flow case prevails when the elastic bloodstream-to-blood

channel interconnecting tubes are of such length as to damp out most

of the pulsatile portion of the blood flow before it reaches the

channel inlet.

4.4 Summary.

The continuity equation 4.1, the Navier-Stokes equations 4.2,

and the channel wall equations 4.3, subject to the specified boundary

conditions, describe completely the assumed porous, elastic channel

flow. The equations, moreover are a system of seven partial differ-

ential equations in seven unknowns. The unknowns include the three
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fluid velocity components, u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t),

the fluid pressure, P(x,y,z,t), and the three components of wall

displacement, r(x,y,t), s(x,y,t), and _(x,y,t). These equations

are consistent with the mathematical model set forth in Chapter III.

It can be seen that in general coupling exists between the

blood flow described and the dialysate flow and between the blood

flow and the channel wall motions. The latter coupling is such,

however, that the blood flow is dependent onthe wall motions only

through the boundary conditions on the three fluid velocity compo-

nents. In contrast, the wall motions depend directly on the flow

through terms in the wall equatlons of motion.

In addition, the flow has been taken to be three-dimensional.

This may appear surprlsing since it has been assumed that the

unstressed channel half-thickness is small compared to channel

width and that normal wall displacements are small compared to the

unstressed channel half-thickness. On the other hand, the spanwise

component of wall velocity can drive flow in the spanwise direction

in accordance with the no slip condition at the walls. Also, it has

not yet been shown that the velocity of flow through the porous

walls is independent of the spanwise coordinate. Thus, in general

the flow depends on allthree coordinate directions.

In the steady flow case, the case for which solutions will be

sought in this analysis, the flow will later be indeed shown to be

two-dimensional.



CHAPTER V

DERIVATION OF SIMPLIFIED GOVERNING EQUATIONS

5el Introduction

In Chapter IV a system of seven partlal differential equations

in seven unknowns was shown to describe the flow and associated wall

motions_ The unknowns are the three fluid velocity components 9

u(xtygztt) _ v(xtt_zgt) and w(xgylzgt); the fluid pressure t

P(xgy_ztt) | and the three components of wall dlsplacement 9 r(x_ygt)t

s(x_ytt) and q(xtytt)_ It is Immedlately clear 9 however_ that the

system of equations and boundary conditions is extremely difficult

to solve exactlyo The Navler-Stokes equatlons t for Instance9 have

nonlinear inertia terms 9 while the wall equations include products

of the derivatives of unknowns. Then_ too 9 the wall equations are

coupled to the flow equations both directly and through boundary

condltlons, It is thus desirable to make simplifications where

Justifiable and to seek some approximate solution of the system of

equations,

To this endt a formal slmpllflcatlon technique - the nondlmen-

slonallzatlon and ordering of the system of equations and boundary

conditions - will be used, This will be employed in conjunction

with a formal perturbation solutlon of the system of equatlons,

The equations and boundary conditions will be rewritten in dlmen-

slonless form t each of the unknowns and independent varlables being

replaced by the product of a dimensionless quantity and a character-

istic value for the unknown or independent varlableo

- 31 -
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The dimensional characteristic values appearing in the equations and

boundary conditions will then be grouped in such a way as to produce

dimensionless parameters° Each of these parameters, which will

possess definite values from the physics of the problem, will exw_

press the importance of one type of force or effect in the flow or

wall motions relative to another° Since these parameters will appear

multiplying nondimensional terms or groups of terms of unit order,

ordering the parameters with respect to powers of the perturbation

parameter (yet to be chosen) will indicate the importance of certain

terms in the equations and boundary conditions over others° The

less important terms can then be neglected, at least in the equations

of zeroth order in the perturbation parameter. Hopefully these

latter equations, while retaining the physical essence of the prob-

lem9 will lend themselves much more easily to solution°

One advantage of this procedure is that it will show under

what physical conditions certain of the terms really can be neglected.

Another is that, unlike reasoning from a strictly physical view°

point, the scheme gives, through the ordering of the parameters, an

estimate of the error incurred by the neglect of higher-order (those

other than the zeroth) solutions.

One the other hand t care must be taken that terms involving

the highest derivatives of one of the unknowns are not neglected0

Otherwise, all boundary conditions on that unknown can no longer be

satisfied and error Nay be introduced in the solutions near bound-

aries.
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5,2 Nondimensionalization of the Equations and Boundary Conditions

for the System

Because the flow and wall equations and the boundary conditions

are in general interdependent, they wi11 be nondimensionalized

simultaneously° Dimensionless variables will be introduced by the

following transformations_

-- m m

x- Lx u- Uu P- Po P

y- _ _ v- v_ r- ro_

Z _ h Z W _ W w s _ ro_

t - T Wp- Wp p n" non 5.1

where L, &, and h are characteristic values for the flow channel

length, half-width and unstressed half-thickness, respectively.

T is the period of one heart pulse° Characteristic values for the

axial, spanwise and normal velocity components are denoted by U,V

and W, respectively° Wp, on the other hand_ is an estimate for the

velocity of flow through the porous walls and because of wall un-

steadiness in the normal direction is, in general 9 different from

the characteristic quantity Wo PDi and Po are characteristic

values for the dialysate and blood pressures. Finally 9 r o and n
O

are characteristic values for the axial (or spanwise) and normal

components of wall displacemento Numerical values for these charac-

teristic quantities are given in Section 503.

The characteristic axial wall displacement r has been used as
o

the characteristic spanwise wall displacement also. This can
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readily beexplalned. To begin with, because thechannel walls in

the unstressed (no flow) state are subject to no stretching, any

stretching that does occurin the stressed statemust be such that

the axial and spanwisecomponents of wall tenslon are of the same

order of magnitude ....Hence, it can be expected that the axial and

spanwise components of wall:dlsplacament are of the same order of

magnitude.

Now, substitution_of_the transformations 5.1 into boundary

conditlons:4.11and_4.12 and.lwall.equation 4.7a and grouping dimen-

sional quantities to formdimenslonless parameters gives

W

22 2I L'÷ __÷

(1-o)
_x ._

°.

ffi(l-c) -_ --2Z_ 5.4
T 8t

5.2

5.3

where use has been made in equation 5.4 of the assumption that the

dlalysate viscous stresses on the walls are of the same order of

magnitude as, or less than, the blood viscous stresses. Equations

5.2, 5.3 and 5.4 can now serve to gfve relations among certain of
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the characteristic values. These relations will aid in simplifying

the nondimensionalization procedure.

First, because flow in the spanwise direction is driven by wall

motion in that direction, the two terms in equation 5.2 must be of

the same order. Thus, the parameter can be set equal to unity.

This gives a relationship between the characteristic fluid veolcity

in the spanwise direction-V_ on the one hand, and the characteristic

axial wall displacement r° and'the period of one heart_pulse T, on

the other: I o)Vffi 5.5

As for the two terms on the right hand side of equation 5.3 nothing

canimmediatelybesaid about their relative importance. However,

the sum of these two terms -and hence the sum of the parameters

appearing in them - must be of unit order. Setting:the sum of the

parameters (w_land (_lequal to unity, then, leads to the following

relation between the characteristic normal fluid velocity W, on the

one hand, and the characterlstic-velocity of flow through the porous

walls W _, thecharacteristic normal wall displacement n , and the
p • o

period of one blood pulse T, on the other:
q
O

WfW +-- 5.6
p T

The physical significance:of equatlon 5,6 is that the characteristic

normal fluid velocity consists of a part due to wall porosity and a

partdueto_wall_unsteadiness. Depending:onthe particular situation

encountered, one or the other of these contrlbutlonsmay predominate

Thirdly, in equation 5,4 the magnitude of the fourth term is
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determined by the dimensionless group

Now 9 since viscous stresses drive the wall motions in the axial and

spanwise directions and since inertia effects can be expected to be

small compared to viscous effects, the leading wall displacement and

viscous stress terms of this equation should be of the same order,

namely unity. As a result, the dimensionless group (1 - o )

/_ \/_
,_:j_j o._b._._oq,_l_oo_..T_ _,°___o1_oo_,_bo-

%-U/% /

tween the characteristic axial wall displacement r o and other, more

easily measured quantities :

r ffi(i - a )
0

Further, combining relation 5.7 with 5.5 yields

v = (i- a ) uu 5_8

If equations 5.6, 5.7 and 5.8 are now used together with the

transformations 5.1 and if, in addition, the symbols a and R

are employed to denote the dimensionless groups [_)andIU-_Ll (hi,--- , ''_

respectively, the continuity, Navier-Stokes, and wall equations can

be written in dimensionless form as follows :

_ +(i-_) m

+ _O

59
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_z

+

'Po _P + (i-o )

÷

+ _? u _x

+ (_ -o ) v a_ +
no L

w

_ _ + + _[[_/_\_fU / 8z

+ "---2" + 5.10
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_)u +c=
2 2_

'Itm_.r _ r(z-o) ---'2

ET _E

2 2
2

(I-o) _ ___i;
ET _2

4 _ 2 4- 4_

_2 _X2_ _r2 _4

+ 12 (1- o" ) ;)-.._n =
_)_2

_X _x 2
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3

I 2
(1-a)

+

ETI _2

lJ _i_x

az •

5. ii

Similarly, the boundary conditions can be written

_x

x=0

= - IT)-BL i + n I an cos (2nil t)

+b

- k

Pl =i+ Y _c= 0 n=l n

+ dn sin (2 n_)]

cos (:2 n_)

5.12

5.13

5.14
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where

and

i+ no L p

I .oI(.o)
m ._

AP -, _ W
m qb p

5.15

5.16

5.17

5.18

[ ()C_o)I_)= Po i - 2a _hU

5.19



- 41 -

_1 = 0 5.20
I e

= 0 5.21

rle = 0 5.22

Sic = 0 5.23

These equations and boundary conditions indicate that the

significant nondimenslonal parameters for the system are

'o / ""'lT'o/ "

All of these have physical meaning. The parameter o is Poisson's

ratio; (_) , the ratio of channel half-wldth to wall thickness;

_I_E--_), a measure of the importance of viscous shear forces compared
k--¢

to elastic forces; (_) , the Strouhal number, a measure of the

importance of fluid unsteady effects compared to fluid inertia

effects; , the ratio of channel half-wldth to length; _, a
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measureof the importance of the flow through the porous walls com-
D_

pared with the axial flow; (__o_o_, the ratio of the characteristic

normal component of wall displacement to the unstressed channel half-

'f-3thickness; , the Euler number, the ratio of pressure to

_ _oor_o_'_o__,_omo_e__n_o_ax__ow_o_
number, a measure of the importance of fluid inertia forces compared

(hiwith viscous forces; _ , the ratio of unstressed channel half-

thickness to channel length; (_}, the ratio of the. unstressed

o_a_o_a_-_o_no_o_o_a_-._h_f4),a°oa_u_oo_,__l
\ ET

the
importance of wall inertia to wall elastic forces; _#_ , a

%1

measure of the importance of pressure to wall elastic forces; -BL

the ratio of the _solute value of the inlet axial pressure gradient

to the inlet pressure divided by the channel length; , the

ratio of the max_um total across-membrane pressure difference to

the inlet blood pressure; _i), the ratio of the dialysate

pressure at the dialysateinlet to the inlet blood pressure; ,

the ratio of the osmotic pressure difference, to the inlet blood

pressure; and _-_oI ' the ratio of the dialysate, pressure drop to

the inlet blood pressure.

In particular, the parameter

to the modified inlet axial Reynolds number, R; that is

can be interpreted as the ratio

5.24

WL

I_I_l_ _ :°
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As such, this parameter is a measure of the relative importance of

the porous wall and axial mass flows.

Also, the dimenslonless group lal--(_I (LI_ has speclal

significance as a measure of the relative importance of wall un-

steadiness in the normal direction to the flow through the porous

walls. Hence, the group describes the relative importance of the

terms on the rlght-hand-side of boundary condition 5.16. (Note that

this group depends on the parameter a.)

5.3 Derivation of Simplified Governlng Equations and Boundary

Conditions.

The values of the various nondimensional parameters for a modi-

fied Kiil kidney can be deduced from characteristic data taken from

Billmeyer (3) Cole, Pollard and Murray (7), Merrill and Wells (18)
, • ,

McDonald (42) , Sachs and Funck.Bretano (I0) Sparks (29) and Wilcox
, D

Freeman, Maher and Schrelner (40). The datais as follows:

L - channel length = 111 cm.

£ - channel half.wldth = i0 cm.

h s unstressed channelhalf-thickness

= 2.0 x 10-2 om.

T = period of one blood pulse = 0.8 sec.

U = characteristic axial blood velocity

= 1.56 Cm/sec.

W s maximum velocity of flow through the porous
P

walls = 1.7 x 10 -5 Cm/sec.
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AP
08

P = inlet blood pressure
o

= 12.5 x 10 4 dynes/cm2

no ffi characteristic normal wall displacement

ffi 2 x 10-3 cm.

PDI ffi dialysate pressure at dialysate inlet

= 6.4 x 10 4 dyneS/cm2

APD = dialysate pressure drop

- 5 x 104 dynes/cm2

- maximum osmotic pressure difference

- 1.0 x 106 dyneS/cm 2

-8 = absolute value of the inlet blood axial pressure

gradient

= 3.28 x I03 dyneS/cm3

AP = maximum total pressure difference,across them

membranes

= 1.0 x 106 dyneS/cm2

= dynamic viscosity of blood

= 4.2 x 10 -2 gm/cm-sec.

pf ffi density of whole blood

ffi 1.06 gm/cm3

E ffi Young's modulus for polypropylene walls

" 1.4 x I0 I0 dyneS/cm2

o - Poisson's ratio - 0.3

p = wall density = 0.905 gm/cm3

m m wall thickness m 4.63 cm.
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Certain of the above values, however, do not appear explicitly

in the literature cited. Instead, they are estimated from other flow

and wall information. (See Appendices A and B.)

This data yields the following values for the significant non-

dimensional parameters:

o=0.3

m£--I 2.16

_h) = i0 -I0
uU 2.34 x

_l-- 80

_I= 9.07 x i0 -2

e = 5.5 x 10 -2

= 0.I

= 4.85 x 104

fU

R -- 1.58 x 10 -4

h) = 2.0 x 10 -4

(_1 = 2.0 x i0 -3

ET

-SL = 0.262

AI-_ ) = 8.0

IPDI_ = 0.512

l Po/J

AQ-_o°S) = 8.0

=

1.Ol x 10 .8

8.93 x 10-6

Since the modified inlet Reynolds number R governs the impor- "

tance of axial fluid inertia effects and also is small compared to

unity, a perturbation solution of the nondimensional.equations and

boundary conditions will be sought using this Reynolds number as the

perturbation parameter .....The other parameters:appearlng in the
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equations and boundary conditions, then, will be ordered, for the

case under study, with respect to powers of the parameter R. The

ordering, moreover, will be such that a parameter will be considered

to be of order i in R if its value lies between Ri-½ and Ri+_.

For instance, a parameter of order zero in R will be one whose value

lies between R-½ and R½. (See, for instance, Van Dyke(36)).

The ordering of parameters other than R in powers of R is as

follows :

uU R2

ET !

where the constants A,B,C,D,E, and F all are of order zero in R.

Parameters other than R not appearing above are also all of order

zero in R. (The ordering given by equations 5.25, of course, is

valid only for the value of R associated wlth the problem under

study. Thus this ordering need not be the same in other problems

and for other values of R.)

Next, solutions of the seven unknowns will be sought in the

form
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u = Uo + Ul R + u2 R2 +

_ _ VlV=Vo+ R+ ....

E • • •

W=Wo+_iR+ •

+P R+ ....= -Po 1

r- ro+rlR+ ....

D

+ sI R+ ....= So

_ " _o + _I'iR+ .... 5.26

The barred quantities on the rlght-hand sides of the above relations

are all independent of the parameter R but still dependent on the

other parameters of the problem.

Now, substitution of transformations 5.25 and 5.26 into the

nondimensional flowequations for the system (equations 5.9 and 5.10)

and collecting terms of likepoversln the parameter R gives

BT_o B_

_ B T_o
0
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+ ___o + _ _._o +
_E o _x

2 18PI _ Ul
+B -- - ---,r-, R+ . . .

_x

_Po_

c,+ _ _o_

=0

-- R + "4- " " m 0

ooo nO

5.28

Since the unknowns in each. bracket, of terms above are indepen-

dent of the parameters.R, each bracket.must.be, separately equal to

zero in order for the equations to be.valid, for. all values of the

parameter R less than unity. Hence, the zeroth-order in R flow

equations.are the following:

+ +

2-
_ _ u

o o =0

o
= 0. 5.29

O
-- m 0

_x

o
=0 5.30
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In a similar manner the zeroth.orderln R wallequatlons and

boundary conditions can be shown to be

u° _ 0
U; *

___o2+ o __o+_ __÷ .0

no _4_
--+2 + o

_)X 4 _2_2 _4 "

5.31

3Po -8L I + X cosmm

i)x J n=l n
x=O

+ bn sin(2r_It)_?

kEIx=o - 1 + _ cn cos (2nilE)
n=l

+ dn sln(2n_t_

(2n_E)

5.32

5.33

ul0 = 0 5.34
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v° = ___%o
, ,_

- I 1 - +
w° * i +

5.35

1 +_a1 no L 8t

' t_i '° , t'olA_.
37

D
I

no I - 0 5.38
e

.0
e

5.39

Ir - 0 5.40

O e

Is - 0 5.41
O e

Equations 5.29 through 5.41, then, are the simplified governing

equations and boundary conditions for the problem under considera-

tion. Their structure is such that the wall motion is always coupled

to the flow. However, in the steady (pulse period T = ®), non-

porous (flow velocity through the porous walls w - 0), rigid wall
P

(flexural rigidity _ -®) case, the equations reduce to those for

fully-developed channel flow. Their relation, tothe porous channel

equations of Berman (2) will bediscussed.in;the next section.
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The solution of these equations provides a solution to the prob-

lem under study accurate to the order of the perturbation parameter

R.

5.4 Comparison of the Nondimensional Flow Equations and Solution

Scheme with the Equations and Scheme of Berman.

As pointed out in Chapter I, Berman (2) and a number of other

investigators (28, 39, 31, 32, 33, 43, 44, 45) have previously

studied flows in porous, rigid channels. It would be particularly

interesting to compare theirbasic equations and solution methods

with the equations and scheme of this study. However, because the

work of these investigators is based on the approach taken by Berman

(2)
, such a comparison need only be made with Berman's studies.

In the first place, the flow equations and boundary conditions

of this analysis reduce to Berman's for steady (pulse period T = ®),

rigid channel (flexural rigidity D = _), two-dimensional (channel

half-width £ = _), flow in which the velocity of flow through the

porous walls, Wp, is independent of the axial and spanwise coor-

dinates (w = constant). Hence, while the flows described in the
P

two studies are somewhat similar, they do have important physical

differences.

A more fundamental difference lles inlthe choice of perturba-

tion parameter. (Both analyses seek perturbation solutions of

relevant equations.) Berman, on the one hand, uses a Reynolds

number based on the flow through the porous walls, E B, and solves the
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case for which this Reynolds number is small compared to unity. In

the present study, however, the modified axial flow Reynolds number

R, is used. This is advantageous in that it shows clearly that for

a wide class of flows in porous channels the importance of axial

inertia effects depends on the latter Reynolds number, not one

based on the porous flow. (See equations 5.10). For example, for

values of the modified axial flow Reynolds number small compared to

unity, axial inertia effects in these flows can be neglected. To

the contrary, in Berman's scheme, in which the smallness of the

modified axial flow Reynolds number comparedto unity is a tacit

assumption, axial inertia forces can beneglected only in the ab-

sence of flow through the porous walls.

Berman's porous wall solutions, which include inertia effects,

are, of course, valid even when the Reynolds number R is small

compared to unity. But, at least to zeroth order in the modified

axial Reynolds number, the use of the fullNavier-Stokes equations

(including nonlinear inertia terms) is in this lcase unnecessary.

In fact, in Section 6.3 it will be shown that the general steady

flow solutions of the slmplifled equations obtalnedin the last

section reduce to Berman'sfor the case of constantJvelocity of

flow through the porous walls.

In addition, one important consequence of the fact that non-

linear inertia termsrcan beoneglected in this situation is that

major mathematical._difficulties are removed"in the solution of slow,

vlscous flows in porous channelsfor_which_the velocity of flow
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through the walls is not a constant. Solutions of these:flows are

now possible when this velocity is, for example, a function of the

pressure field. Such is the case in the problem under study.

Another fundamental difference between the two analyses is that

the importance of wall porosity effects is shown here to be governed

by a second parameter, u , the ratio of Berman's Reynolds number to

the modified axial flowReynolds number. (See equation5.24). This

second parameter is implicit in Berman's solutions, hut it is given

no specialsignificance.

As a Reynolds number ratio, this parameter is, moreover, a

measure of the importance of the flow through the porous walls com-

pared to the axial flow. And since in the present study the para-

meter _ is assumed to be of_order unity or less, the simplified

equations derived are not limited only to situations_in which the

mass flow throush the porous walls is small compared to::the axial

mass flow. In fact, for a velocity:of flow through the lporous.walls

. independen£ of the axial and spanwise coordinates and for a value of

this parameter equal to unity, the inlet flow will just balance the

flow through the porous walls_ For values of this parameter greater

than unity the channel will empty.

A special situation arises, however, when the absolute value of

the parameter e is larger than unity. (This is possible for either

large injection or large suction of fluid at the porouswalls). In

this case the importance of axial inertia forces:is governed not by

the modified axial flow Reynolds number, but rather by the product
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of that Reynolds numberand the Reynolds numberratio. Consider,

for instance, equation 5.10a rewritten for steady flow:

C cPlu --R
_x _z. _fu _x

2__ 2_

+ "-_-2 + _- 2 + _"_"-2
_x _Y _ Z

5.42

It is clear from this equation that at least one of the axial inertia

terms is now of order R lal , not of order R. (The other axial

inertia term may also be of order R lal. However, this cannot be

shown from the ordering used in the present problem.)

Moreover, the product of parameters R u, as it turns out, is

exactlyBerman's Reynolds_numberfortheflow through_the porous

walls. The obvious implication is-thatinthisflow situation the

flow through the porous walls Is'of greater:importance than the

axial flow. Axiallnertla_effectsAarethen sensibly:important re-

gardless of how small the-modlfled:axlal:Reynolds number may be.

Furthermore, in this:case, the:.extent of Importance_of these effects

is governed by the parameter _, • A set of equations like Berman's ,

which retains inertia terms, must be solved. Hence, while Berman's

equations unnecessarilykeepi_ertla terms for small values of the

parameter _ other inyestlgators:are correct:in using these equations

toobtaln solutions for large(in absolute value) values of the para-

meter _. (In the'latter situatlon the reciprocal of _ is used as

• the perturbation parameter.)
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Phenomenaassociated with flow unsteadiness and channel wall

elasticity are also introduced here. Although the mathematical

model is such that the flow is largely independent of the wall mo-

tions, but the wall motions are dependent on the flow, the simpli-

fied equations and boundary conditions permit an investigation of

the effects of wall porosity on the normal wall displacement.

In the unsteady situation, moreover, the flow is shown to be

coupled to the wall motions through the wall boundary condition on

the normal fluid velocity component. The importance of this coup-

ling - in the form of wall unsteadiness in the normal direction -

relative to wall porosity effects is governed by the parameter

I _ (_I I_ll ' a c°mblnati°n of the porosity parameter _, the

rat_f_hecharacteristicnormal_k_ll displc_ent n o to the un-

stressed channel half-thickness h, and the Strouhal number. (See

boundary condition 5.36).

In short, it is felt that the parameters of this analysis give

greater physical insight to porous channel flows than those used by

Berman. First it is made clear that axial inertia forces need not

always be important. In particular, in flows with finite wall poro-

sity for values of the porosity parameter less than or equal to

order unity, these forces are shown to be negligible for values of

the parameter R small compared to unity. The simplified equations

and boundary conditions obtained are valid for this case. (See

Appendix C for further comments on the above).

Secondly, it is pointed out that other investigators have been

correct in using Berman's equations to obtain solutions for large
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(in absolute value) values of the Reynolds number R B.

5.5 Summary.

The simplifications arrived at in determining the final equa-

tions of the last section have physical significance. In the first

place, the flow has been shown to. be two-dimensional to first order

in the parameter R; thespanwise fluid velocity component is zero

to this'order_while'.thepressure_fleld, and:axlal_and_normal fluid

velocity components:are:independent_of_:thespan_Ise:coordinate.

This is_a consequence both"of the smallness'of;the_unstressed channel

half-thickness:,compared_to_channel:widthand_ofthe smallness span-

wise wall unsteadiness.

Secondly_ the pressure, field, has-also-been, shown-to_be, indepen -

dent'of the normal coordinate_ to'first'order-in-the-parameter R.

This results from the smallnessof:the_unstressed-channel half-

thickness compared_to channe1:length_Hence%_the pressure field is

a function of the axial coordinate alone.

As for the wall motion_ it is apparent_:that_ to first order in

the parameter R, the normal_component of wall displacement can be

solved for independently_of:theaxlal and spa_wise components of

wall displacement. No coupling exlsts to this order, between the

normal and the other components_This_is largely-a_consequence of

the dominance:of wall bending_forces-over-forces-arising from pure

extensions orwall_stretchingdue to, fluid'viscous:shear at the

walls.
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A determination of the axial and spanwlse components of wall

displacement, on the other hand, involves the solution of two simul-

taneous linear partial differential equations.

Next, fluid inertia forces have been shown to be unimportant

to first order in the Reynolds number R. (This has been discussed

in the last section).

The neglect of viscous terms in the zeroth-order in the para-

meter R normal fluid momentum equation, on the other hand, indicates

that the normal component of fluid veloclty at_the, channel inlet

cannot be specified. Ideally, because the flow at the inlet is

assumed tobe fully-developed, one would,like to specify this velo-

city component to be zero at the inlet. But this cannot be done

unless the full Navier-Stokes equatlons are used._ Therefore, the

normal component of fluld:veloclty will take on_somenon-zero distri-

bution at the inlet and the_zeroth_order equationswill be somewhat

in errorvery near this locatlon. Thls error, however_is standard

in many, analyses of fluid flow in channels with low aspect ratios.

Then, too, since_ the_ unknowns, of the'flow are_Independent of

the spanwlse coordinate_ to_ first order _In-the' parameter_ R, boundary

conditions cannot be satisfied for the axial _and normal fluid velo-

city componentsat the non-porous'side walls; that Is,-these velocity

components cannot bemade_to vanlsh_at the'slde_walls._ However, the

solutions for the flow arevalid away from these walls.

• Finally, the zeroth_orderflow equations_and boundary conditions

can be seen to become_uncoupled from the wall motionforsteady flow.
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In fact, were it not for the coupling with wall unsteadiness in the

normal direction provided by the boundary condition ,at,the porous

walls on the normal fluid, velocity component, this, would be_ true for

unsteady flow as well. The importance,, of such coupling_relative to

wall porosity effects, is governed_:by the dimensionless group



CHAPTER VI

Stead_ Flow in a Porous Elastic Channel for Modified Inlet Axial

ReynoldsNumbersSmallCompared to Unitz.

The simplified governing equations derivedin the previous

chapter (equations 5.29 through 5.41) willnow be solved for the

steady flow case (blood pulse period T = _). Thls flow case physi-

cally correspondsto the situation in whichseveralfeet of body-to-

kidney interconnecting: tubing: is used. Because of _tube. elasticity,

such lengths of tubin_tend to "damp out, the_pulsatile portion of

the blood flow.

The axial and spanwisewall.displacement_components, however,

will not be solved for. In the first.place, the normal wall dis-

placemen_eomponent__is.of_much.gr_at_T_ineerest._econdly, the

information known concerning, theaxial, andspanwise wall displacement

components is incomplete ....Apart froman,order,ofmagnitude, nothing

is known about the dialysateflowcontribution, to_.the, viscous shear

stressesacting on the walls

6.1 General Solution for the Flow.

The velocity components and pressure.willnow be solved for

exactly. First, equations 5.29, 5.30, 5.36 and 5.37 combine in the

steady case togive (zeroth.order.subscripts omitted)

6.1-- +a -- =0

- 59 -
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2

E dP _ u = 0 6.2

dx _z 2

= p- _-_olPD +
6.3

Integrating equation 6.2 and making use of boundary conditions 5.34

for steady flow results in

_ d_) 2 6.4

Equations 6.1 and 6.3 then become

-
w = - 2-X [dx_/ --_z }

dx 2 _ Po]

6.5

6.6

Equation 6.6 is an ordinary differential equation for the dimension-

less pressure P. Once it is solved, the axial and normal velocity

components can be obtained from relations 6.4 and 6.5.

The solution of equation 6.6 is

= C1 sinh /y-x + C2 cosh /-y x

where PD is a linear function of the dimensionless axial coordinate

(See equation 5.18) and where CI and C2 are constants to be deter-
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mined from the inlet conditions on the pressure and pressure gradient.

The parameter Y is defined as

-- 6.8
y = g -

Making use of the transformation 5.25 b, however, the constant g can

be eliminated from the above expression. This gives

3u
6.9

The parameter 7 can be seen to be simply a modified version of the

Reynolds number ratio _ .

Further, from boundary conditions 5.32 and 5.33 for steady flow,

it can be shown that

6.10

6.11

Substituting relations 6.10 and 6.11 into equation 6.7 now gives the

dimensionless pressure drop:

P-Po -SL( oI
+

6.12
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Finally, with the aid of equation 6.12, the dimensionless axial

and normal velocity componentscan be written

u Po -SL -

_ sinh

+ To cosh v_y x - (i - z ) 6.13

_'-BL + APD 7

_f_t xJ 1 3)

slnh_ x (;_-Sz

6.14

The spanwlse component of velocity has not been solved for

since it is smaller than order one in the perturbation parameter R.

6.2 General Solution for the Normal Wall Displacement.

The solution of the normal wall displacementequation (equation

5.31) subject to appropriate boundary conditions yields the dimen-

sionless wall displacement, --_ , as a function of the axial and

no

spanwise coordinates.

To begin with, the wall boundary condltions;(equations 5.38 and

5.39) are satisfiedllf_the dimenslonless_wall displacement is taken

•to be the Fourier series
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= [ [
qo m=l n--i A sin m H x sin n _(y+0.5) 6.15

mn

The coefficients %n' yet to be determined, are such that equation

5.31 is satisfied.

Wang (37) has evaluated these coefficients for the case of a

thin plate subjected to an arbitrary loading - one dependent, for

instance on both the axlal and spanwise coordinates. His result,

adapted for the problem underconslderatlon, is

4

mn _4(_)2 m2

0.5 1

x
-0.5 0

3

sin m _ x sin n _(y + 0.5) dxdy

6.16

If now, the expression for the dimensionless pressure (equation

6.12 plus unity) is substituted into the above equation and the

integration carried out, the coefficients A become
mn

Amn = mn [4 (_)2 2 n_TE_m + 12(1- 02)

!



_
The normal wail displacement, then, is given by the Fourier

series 6.15, with coefficients determined by equation 6.17.

In an artificial kidney, however, the actual wall boundary

conditions may very well be more nearly those of a clamped plate

(zero displacement and zero first derivative along the normal to t?_2

edges at the edges) than those of a sinlply-supported one. (The

actual conditions, as is the case in _ost physical situations, are

ones somewhat between these two "extremes.") But a solution of the

no__nal wall displacement equation for cla_ped plate conditions is

extremely difficult to obtain at the present state of our kno:_,led_e

(34,41)
• One particular difficulty is that no eigenfunctions exist

_Thich satisfy both the governing wall equation and the clamped

plate conditions (41). The fact that the wall loading is not uni-

form adds further complications. Hence, such a solution has not

been sought here.

On the other hand, the wall displacements obtained for simply-

supported conditions, larger than the more constrained ones which

would be obtained using cl_mped corditions, can be considered to be

upper bounus on the actual deflectlens.
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6.3 Limitin_ Cases of the General Solutions.

Two limiting cases of the flow and wall solutions obtained in

this chapter are of particular interest.

CASE A

First, when the pressure difference across the membranes is

large compared to pressure variations in the flow field, the velocity

of flow through the walls assumes a nearly constant value. Mathe-

matically this is stated as:

0 (1) , 6.18

where is the ratio of the characteristic pressure difference

pressure,  -L- is
across _e membranes to theinlet blood _po_ the ratio

of the inlet axial pressure gradient to a characteristic non-porous

channel axial pressure gradient, and _-'p_Jis the ratio of the dialy-

sate pressure drop to the inlet blood pressure.

Now, for values of the Reynolds number _ratio, s of order zero

in the parameter , the order of the modified Reynolds number

ratio Y is given by

m

2

_3 /pfu <)

= O. 399
s = 0 (Po 6.19
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Condition 6.18 together with the above ordering, the_, leads to the

following limiting case of the general solutions:

o =_ -BL + ½ -- T x

Po _ Ol

u R

U 2

w__ = 3 (z 1w _ _ _ ;3)
P

6.20

no m=l

x
12(i - 02)

+ -BL _ ½

4_l-cos nn)

n=l mn +

COS m__"

'Z"

1I6

(1-cos m E)

6.21

The flow solutions 6.20 are equivalent to Berman's zeroth-order

solutions for a constant velocity of flow through the porous walls.

Thus it is clear that Berman's solutions are a special case of the

results derived herein.

The wall displacement 6.21 is that of a slmply-supported plate

under a loading quadratic in the axial coordinate.

CASE B

A second interesting special case arises.when the ratio of the
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total outflow through the porous walls to the inflow is small com-

pared to unity. Mathematically this can be stated as

y < < 1, 6.22

where Y is the modified Reynolds number ratio. Condition 6.22

results in :

P-p
O

i D

P
O

u _R

U _= 2
w__ _3

% 2
6.23

n I I 4(1-cos nn

....no mffil n_l mn _, 2+ n

÷ K 6.24

Equations 6.23 describe the well-known Poiseuille channel flow, but

with finite, though negligibl=,wall porosity. Hence, Poiseuille

channel flow is the limiting case of the general flow solutions of
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Section 6.1 as themodified Reynolds ntunber ratio 7 tends to zero.

Equation 6.24, further, describes the deflection of a simply-suppor-

ted plate under a hydrostatic loading.

According to the values ascribed to,the various.parameters in

Section 5-3, 7 has in the problem ofthls..study the value

7 " 2.2 x 10-2 < < 1.

Consequently,thls limiting case describes_welltheflow situation

in present Kill kidneys.



CHAPTER VII

Discussion of Results.

In the previous chapter dimensionlessmathematical expressions

have been found for the fluid pressure, velocity components, and

the normal wall displacement. These solutions, in general form,

x
are functions of six dimensionless parameters: _, the dimensionless

z
axial coordinate; _, the dimensionless_normal coordinate; 7 , the

-SL
modified Reynolds number ratio; (--_), the. ratio of.the inlet axial

o

pressure gradient to a characterlstic non,porous channel axial pres-

sure gradient; (@} , the ratio of the characteristlc pressure dif-

oference across the membranes to the inlet bloodpressure; and

o
the ratio of the dialysate pressure drop to the inlet blood pressure.

The behavior of the solutions_vill now be examined as each of these

parameters is allowed to vary while_ne?others_are_held constant.

The fixed values of the:various parameters used are, with one excep-

tion, in agreement with the valueslof theseparameters determined in

Section 5.3. The one exception is themodlfled Reynolds number

ratio 7, for which a value of 0.2 has been employed. Such a

valuehas been chosen_inlieu.ofthemuch.smalleractual value of

this parameter for KiiL kidneys in order to indicate the effects of

wall porosity in future kidney designs for whlch 7 is not necessar -

ily small compared to unity (but still somewhat less than unity).

First, Figures 9 through 13 portray thedlmensionless axial

If u
parameters. Thisveloclty component can be seen to be locally para-
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bollc in the normal coordinate. However, its.mid,plane value decays

exponentiallywith the axial coordinate, reflect_gthe fact that

the axial flow slows as fluld mass is iost.throughNthe porous walls.

The profiles of Figure 9, therefore, _:are non,similar ones, in agree-

ment_with the fact that_ the veloci_of flow through the porous

walls has been allowed to. depend on the_pressure field.

The extent of the decay ofthe.dimenslonless, axial velocity

component, moreover, increases as_eparameters y , and

I-_ are increased since±ncreaslng.these, parameters_has the effect
%.D

of augmenting the effects, of wall porosity.and, decreasing the axial

mass flow. On the other hand, the extent,of.decay decreases as the

parameter (--'_o)-BL islncreased. This is. because enlarging the latter

- parameter increases theaxialflow rate, and hence exposes the fluid

for_shorter times to;the_effects_of:wall porosity.

From the flow solutions, it,can be seen that in. the limit as

the ratio of the total flow_ thro_h thaporous_ walls to the inlet

flow tends toward zero. (y ÷ 0), the_uniform Poiseuille velocity

profile results. (See Section 6.3).

Secondly, Figures 14 through 18 ill_trate the effects of these

same, six_ dlmensionles_,parame£ers,: on the. dimensionless normal velo-

w
city component, _. This. velocity component _is. locally cubic in

P

the normal component. Further, since;its value at the:porous walls

can be observed to decay expe,ae_lallywlth the axial coordinate,

the profiles of Figure_14, like those of Figure 9, are non-similar.

However, unlike the situation in the case of_ the axial velocity
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component, the extent of this decay decreases as the parameters 7 ,

and -_) are increased and increasesas the parameter -SL

is made larger. The explanation.for this_lies_In thefact that as

the total amount of fluid passin_through tha.porous channel in-

creases ( 7, , or _-_) increasing) relatlve to the amount

of fluid_enteringthe_channel, less._and!less of the_entering fluid

need be driven the entire channel=leugCh. Energy losses - and hence

the axial pressure drop - diminish. As a =esult;:the local pressure

and hence: the_normal. :velocity component, _whi-ch:_:depends_ on the local

pressure, decreases to.a lesserextent. <.The:opposlte, however,

occurs as theparameter: (---_0t-SL is Increased.

Next, Figures_19 through22_Indicatetha:effects of varying

P-p
_____%o

thevarious parameters, onthe dimenslonless, pressure drop, p ,
o

Like the. veloclty..components.):the pressuredrop, too) decays expo-

nentially, but in such a.way-that the total..pressure.drop is less-

ened, (The dotted.curve of_Figure20, for. example) corresponds to

that for_anon-porous.channel.flow._and.ls, the:lower..bound for the

other_curves,) The. dependence_of the extent.of.decay, on the various

parameters, however,_is_of_course,.similar.to_that:for the normal

velocity component,

• It should, be. particularly, noted from:Figures21, and 22 that,

forthe range of_the..parameters<.eKamlnedjvarying, theparameters

and _ Po_ has_little_effect_on_.the..dimenslonless pressure

drop, Hence, this pressure drop is. largely independent of these

dimensionless quantities,
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The dimensionless normal wall displacement; 12(I_o z )

no , -- is illustrated in Figures

23 and 24. This wall displacement is primarily pressure driven, a

fact reflected in the dependence of this displacement on the local

pressure; that is, while the normal wall displacement satisfies the

boundary conditions _for_ a simply-supported plate, away from bounda-

ries it closely parallels the pressure field. In particular, the

effect of increasing_ the. modified. Reynolds. number ratio 7 is to in-

crease wall displacements somewhat downstream (where_the: pressure

is most affected_,by the_ cumulative effacts.of wall porosity). (For

comparative purposes, the dotted: curve of Figure 23_illustrates the

limlting case as 7 tends to _zero). On the other hand, larger values

of the ratio of.the absolute_ value_of_the.inlet_axlal pressure gra-

dient to the characteristic non-porous channel.'_,axial pressure

gradient, (-_o)-SL , leads, to dlmished displacements somewhat down-

stream.

Although the dlmenslonless_normal wall displacement _also depends

on the parameters and _'-_/ ' the variation of.this displace-

ment with these parameters Is_ negligible_ and.has,, therefore, not

been depicted. This is because_, inasmuch_ as the parameter 7 must

be restricted to_ values_ small compared to one_ (0.2 in these figures),

the degree of blood pressnre_ -_dlalysate pressure_ coupling is small.

(See, for instance, Figures 21 and 22), Hence, the dependence of

the normal wall displacement: on: the: parameters and _ Po [

can be expected to be small.
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Finally, the curves of Figures 9 through 24 are, strictly

speaking, valid only for a homogeneousfluid. They are meaningful

for the non-homogeneousblood flow under consideration only to the

extent to which the total flow through the porous walls is small

compared to the inlet flow; that is, they aremeanlngful to the ex-

tent to which the Reynolds number: ratios, and hence the modified

ReyDolds number ratio Y, is small compared to unity.

Small values of the parameter- _, moreover, lead to the second

limiting flow case: described:in Section 6.3. In:thls case, the

effects of wall porosity:on: the. flow:are negligible, and:-the axial

velocity component _and the=-pressure_ field become those _for Polseuille

channel flow. The normal, velocity component, _however, remains

coupled to the. local: pressure: and_takes on: a linear variation in the

axial coordinate.

Large osmotic pressure: dlfferences, on the other hand, can lead

to the first limiting case_of Sectlon 6.3. In: this situation the

velocity of flow through the_ porous.walls= approaches a constant

value all along the channel, and flow solutions equivalents:to Berman's

result.



CHAPTER VIII

CONCLUSIONS AND SUMMARY

The general nature of flows in porous elastic channels for

which the ratio of unstressed channel half-thickness to channel

width and length is small has been delineated. A mathematical mo-

del has been chosen which assumes an incompresslble, homogeneous,

Newtonlan fluid in laminar flow. The channel walls are uniformly

porous, Hookean elastic thinplates. Further, the flexural rigidity

of the walls is such that normal wall displacements are small com-

pared to the unstressed channel half-thlckness.

In particular, conditions are given for which the analysis

applies to the thln-film blood flows encountered in parallel plate

art_flclal k_dneys. Such flows are gen_lly/_ounded by flexible,

somewhat porous membranes. However, it is assumed here that the

membranes are supportedby material of relatively high rigidity

in such a manner that themembranes and this material together com-

prise porous, elastic channel walls. In the light of recent re-

search trends, such an assumption can be expected to be areasonable

one for future kidney designs.

The most general, tlme-depedent equations and boundary condi-

tlonsdescrlblng the flow and channelwallmotlons have been formu-

lated. (The flow istlme-dependent inasmuch as it is driven by

the pulsatile arterlal-venous pressure gradient.) These equations

and boundary conditions have then been simplified by means of a

formal nodimenslonallzatlon and ordering of the termsappearing in
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the equations followed by a perturbation solution in the modified

axial Reynolds number. The result has been a system of linear

zeroth- order(in the above Reynolds number)equations in which inertia

terms are absent.

More important, the simplification procedure has made it clear

that inertiaeffects are unimportant for a wideclass of flows in

porous channels. The importance of such effects in these flows is

governed by the modified_inletaxial_Reynoldsnumber, x .

And when this Reynolds number issmall compared to unity, as is the

case in the problem whichhas been considered, inertia effects can

be neglected. This conclusion cannot be deduced from present work

in the field of porous channel flows.

The relative importance of the total flow through the porous

walls compared to the axial flow has been shown to depend on a

second parameter, _, the ratio of a Reynolds number for the flow

through the porous walls based on unstressedchannelhalf-thlckness

(a Reynolds number used in other work) to the modified inlet axial

Reynolds number. When the parameteru is of unit order, wall

porosity significantly affects the axial flow. However, when u is

small compared to unity, small deviations from Poiseuille channel

flow result. (A modifled version of the parameter s, a dimensionless

group denoted by _, has actually been used herein).

For values of _ larger than unit order, inertia effects cannot

be neglected no matter how small the modified inlet.axial Reynolds

number may be. Equations found in existing workin porous channel
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flows must then be used to obtain correct solutions for the flow.

In pulsatile, porous _elastic channel flows, further mthe rela-

tive importance of wall. unsteadiness in the normal direction to wall

porosity in determining the boundary condition on_ the..normal velocity

component atthe channel, walls,has.been shown to_be, described by the

parameter,_ _ I__9_o)(f LtL!!_where _ is the Reynolds number

ratio, _h--_ is the ratio characteristic normal wall displace-

ment to the unstressed channel half-thickness, and (-_) , is the

well-known Strouhal number.

Although valid for tlme-dependent flows, the.simplified govern-

ing equations and boundary conditions have been solved for the sub-

case of steady flow. This flow situation is ameaningful one for

artificialkidneys whichmake use of several feet of_pulse_dampening

elastic interconnecting tubing.

General_solutions have beenobtainedfor thedimenslonless

axial andnormal fluidvelocity components,.the, dimensionless fluid

pressure, andthe dimensionlessnormal.wall, displacement. These

solutionsindicatethat allbutthe last.ofthese, quantitles decay

exponentially with, the, dimensionless_.axial_.coordinate._ The extent

of the_ decay depends_ upon, the magnitudes of._the various, flow para-

meters. It was found, however, that theparameters , the

ratioofthe characteristic..pressure.._difference,.across_the-artificial

kidney membranes, to. the inlet blood pressure, and ._. Po ] ,.the ratio

of the dialysate pressuredrop, to theinlet blood pressure, have a

negligibleinfluence, on the dimensionless_pressure._field, and the
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dimensionless normal wall displacement.

As for the dimensionless normal wall displacement itself, the

magnitude of this displacement is somewhat increased downstream as

i

the Reynolds number ratio .u is increased. The magnitude of this

displacement, however_decreases markedly as theparameter -SL

the ratio of the absolute value of the inlet axial pressure gradient

to a characteristic non-porouschannel flow axial pressure gradient,

is enlarged.

Two limiting cases of the general solutions have heen. discussed.

The first of these describes what happens as pressure variations in

the flow field become small compared to the reference pressure: the

velocity of flow through the porous walls approaches a constant

value and flow solutions equivalent to those found in the litera-

turefor this case result..In an artificial kldney this flow situa-

tion corresponds to the use of large osmotic pressure differences

across the porous membranes.

The second points out that Poiseuille channel flow results as

the ratio of the total flow through the porous walls to the inlet

flow tends to zero (u ÷ 0). This case is of interest in present

artificial kidneys, in which the parameter u is finite but small

compared to unity. In this application, the axial flow is indepen-

dent of the wall porosity. However, the dimensionless normal velo-

city component is still coupled to the axial flow.

The integration of this velocity component over the wall area,

moreover, yields the ultrafiltration rate. (Ultrafiltration is the
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desirable loss of excess blood fluid through the porous membranes).

This rate is then known as a function of various flow parameters.

The general solutions obtained, it must be kept, lnmlnd, while

valid for all values, of _ for. a homogeneous fluld, are valid for

artificial kidney blood flows,only to the extent to which a is

small compared to unity ....For large values of a ._(_ _greater than

about 0.1 to 0.2) blood .can,-no .longe_ -be .assumed. "to-be_ homogeneous.

The present work has_ described the nature and effects, of wall

porosity in flows in porous,: elastic channels: for whlch: the un-

stressed_ half-thlckness Is_ small compared_ to the other channel

dimensions. It has determined and discussed, the significant dimen-

sionless parameters_ governing the flow. field, and the:normal wall

displacement, In particular, the analysls: has beenrapplled to the

blood flow in, parallel plate: artlflclal_ kldneys. ...._ better_ under-

standing of this flow_has_ resulted-in the light, of new knowledge

obtained concerning- the _axlal_ and, normal_ velocity_ components • the

pressure field• and, for kidneys of the type discussed in Section

2, i, the normal wall dlsplacement. Such a better understanding can

provide guidellnes, for optimizing-ultrafiltration,.mlnimlzlng the

effects .on. the flow of wall _displacement_, .and_ therefore, designing

improved, artificial kidneys.



io

.

o

o

.

.

.

So

.

i0.

ll.

12.

REFERENCES

A.L. Babb and L. Grimsrud, "A New Concept in Hem.-

dialyzer Membrane Support," Trans. Amer. S.c. Artif.

Int. Organs, Vol. X, p. 31, 1964.

A.S. Berman, "Laminar Flow in Channels with Porous

Walls," Journal of Applied Physics, Vol. 24, p.

1232, December 1953.

F.W. Billmeyer, Jr., Textbook of Polymer Science ,

Interscience Publishers, New York and London,

p. 502, 1962.

R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport

Phenomena_ Wiley _ York, 1960_

L.W. Bleumle, Trans. Amer. S.c. Artif. Int. Organs,

Vol. IX, p. 71, 1963.

S.E. Charm, W. Mc Comis, and G. Kurland, "Rheology and

Structure of Blood Suspensions," Journal of Applied

Physiology, Vol 19, p. 127, 1964.

J.J. Cole, J.L. Pollard, and J.S. Murray, "Studies on

the Modified Polypropylene Kill Dialyzer," Trans.

Amer. S.c. Artif. Int. Organs, Vol. IX, p. 67, 1963.

R. Courant and D. Hilbert, Methods of Mathematlcal

Physics, Interscience Publishers, New York, 1962.

W.G. Esmond and H. Clark, "Mathematical Analysis and

Mass Transfer Optimization of a Compact, Low Cost,

Pumpless System for Hem.dialysis (Dialung)," Biomedical

Fluid Mechanics Symposium (proceedings), ASME, New York,

p. 161, 1966.

R Fahraeus and J. Lindquist, Am. Journal of Physiology,

Vol. 95, -. 562, March, 1931.

L. Grimsrud and A.L. Babb, "Optimization of Dialyzer

Design for the Hem.dialysis System," Trans. Amer.

S,c. Artif. Int. Organs, Vol. X, p. i01, 1964.

G. Kareman, "Some Contributions to theMathematical

Biology of Blood Circulation. Reflections of Pressure

Waves in the Arterial System," Bulletin of Math.

Biophysics, Vol. 14, p. 327, 1952.

- 79 -



- 80 -

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

W.J. Kolff, "Outline of Internal Organs," Trans. Amer.

Soc. Artlf. Int. Organs, Vol. IX, p. 380, 1963.

N.R. Kuchar and S. Ostrach, "Flows in the Entrance

Regions of Circular Elastic Tubes," Master's Thesis,

Case Institute of Technology, Cleveland, June 1965.

E.F. Leonard, "Large-Scale Hemodialysis: Engineering

and Economic Considerations," Trans. Amer. Soc. Artif.

Int. Organs, Vol. XI, p. 26.

E.F. Leonard and L.W. Bluemle, "Engineering in Medicine:

Design of an Artificial Kidney," Trans. N - Y Acad.

Sciences , Set. ii, Vol. 21, No. 7, p. 585, May 1959.

J.Ludwlgson, "Portable Artificial Kidney is Research Goal,"

The Plain Dealer, p. 6, Wednesday, April 6, 1966.

E.W. Merrill and R.E. Wells, Jr., "Flow Properties of

Biological Fluids," Applied Mechanics Reviews, Vol,14,

No. 9, p. 663, 1961.

G.W. Morgan, "On the Steady Laminar Flow of a Viscous

Incompressible Fluid in an Elastic Tube," Bulletin of

Mathematical Biophysics, Vol. 14, p. 19, 1952.

G.W. Morgan and W.R. Ferrante, "Wave Propagation in

Elastic Tubes Filled with Streaming Liquid," Journal

of Acoustical Society of America, Vol. 27, p. 715, 1955.

G.W. Morgan and J.P. Kiely, "Wave Propagation in a

Viscous Liquid Contained in a Flexible Tab e," Journal

of the Acoustical Society of America , Vol. 26, p.323,1954.

E. Reissner, "On Some Aspects of the Theory of Thin

Elastic Shells," J. Bos. Soc. of Civil EnK's,

Vol, 42, p. i00, 1955.

G. Rudinger, "Review of Current Mathematical Models for

the Analysis of Blood Flow," BiOmedical Fluid Mechanics

Symposium, 1966.

A.H. Sachs and D.E. Abbot, "An Analytical Study of the

Relationship between Blood Pressure and Arterial Wall

Displacements," Vidya Report, No. 40, Vidya, Inc.,

Palo Alto, California, 1961.

A.H. Sachs and D.E. Abbot, "Determination of the Physical

Constants Relating Blood Pressure and Arterial Wall

Displacements,', Vidya Report No. 65, Vidya, Inc.,



- 81 -

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Palo Alto, California, 1962.

C.E. Sachs and J.L. Funck-Bretano, "Stretching of the

Dialysis Membrane: A New Device for the Treatment of

Chronic Nephritis (Preliminary Report)," Trans. Amer.

Soc. Artlf. Int. Organs, Vol. IX, p. 79, 1963.

H. Schlichting, Boundary Layer Theory, Fourth Edition,

McGraw-Hill, New York, 1960.

J.R. Sellars, "Laminar Flow in Channels with Porous

Walls," Journal of Applied Physics, Vol. 26, p. 489, 1955.

R.E. Sparks, Proposal for, A Research Program Leading

Toward a Wearable Artificial Kidney, Case Institute of

Technology, Cleveland, 1966.

J.L. Synge and B.A. Grlffith, Principle s of Mechanics ,

McGraw-Hill, New York, 1959.

R.M. Terrill, "Laminar Flow in a Uniformly Porous Channel,"

The Aeronautical Quarterly, Vol. XV, p. 299, Aug., 1964.

R.M. Terrill, "Laminar Flow in a Uniformly Porous Channel

with Large Injection," Aeronautical Quarterly, Vol. XVl,

p. 323, November, 1965.

R.M. Terrill and G.M. Shrestha, "Laminar Flow through a

Channel with Uniformly Porous Walls of Different Permea-

bility," Applied Sclentlflc Research, The Hague, Vol.

15, Section A, p. 440, 1966.

S. Timoshenko and S. Woinowsky - Krieger, Theory of

Plates and Shells, Second Edition McGraw-Hill, New York,

1959.

S. Uchida, "The Pulsating Viscous Flow Superposed on

the Steady Laminar Flow of Incompressible Fluid in a

Circular Pipe," Zeltschrift fur an_ewandte, Mathematlk

und Physik, Vol. VII, p. 403, 1956

M. Van Dyke, Perturbatio n Methods in FluidMechanics ,

Academic Press, New York, 1964.

37° C. Wang, Applied Elasticity, McGraw-Hill, NewYork 1953.



- 82 -

38.

39.

40.

41.

42.

43.

44.

45.

J.R. Womersley, "An Elastic Tube Theory of Pulse

Transmission and Oscillating Flow in Mammalian Arteries,"

WADC Technical Report TR 56 - 614, Wright Air

Development Center, 1957.

S.W. Yuan, "Further Investigations of Laminar Flow in

Channels with Porous Walls," Journal of_Applled Physics;
Vol. 27, p. 267, March 1956.

C. Wilcox, R.B. Freeman, J.F. Maher, and G.E. Schreiner,

"Comparison of Physical Properties and Permeability of

Six CelluloseMambranes," Trans. Amer. Soc. Artif.

Int. Organs I Vol. XII, p. 44, 1966.

D. Young, "Bending of Clamped Plates," J. of Applied

Mech., p. A - 254, Sept., 1947.

D.A. McDonald, Blood Flow in Arteries, Edward Arnold

Publishers, LTD., London, 1960.

E.R.G. Eckert, P.L. Donoughe, and B.J. Moore, "Velocity and

Friction Characteristics of Laminar Viscous Boundary Layer

and Channel Flow Over Surfaces with Ejection or Suction,"

NACA TN 4102, 1957.

W.E. Wageman and F.A. Guevara, "Fluid Flow Through a

Porous Channel,_ Physics of Fluids, Vol. 3, No.6,

Nov.- Dec., 1960.

B.W. Knight and B.B. Mclnteer, "Laminar Incompressible

Flows in Channels with Porous Walls," LA- DC - 5309,

Los Alamos Sci. Lab., 1965.



APPENDIXA

DETERMINATION OF CHARACTERISTIC DATA FOR THE. FLOW VARIABLES AND

CHANNEL HALF-THICKNESS NOT GIVEN EXPLICITLY_IN THE LITERATURE.

Theselection of characteristic data:_for the fluld veloclty

components, pressure drops,_and channel_half,thicknessin the blood-

handling circuit of a modified Kill artlficial kidney is by no means

straightforward. One dlfficulty, for example, is that no accurate

measurement of the actual_mea_-bloodfilmthlckness (hence, mean

channel thickness)hasyetbeen made. (Because themembranes are

subject to sag and relaxation, "mean" thlcknesseswill be spoken of.)

Thicknesses given in the literature are nominalones based on the

spacing between the ribs of:one of the ribbed parallel plates and

those of the other, Thase. thicknesses_do not take into account mem-

brane sag in the between-rib spaces and hence are on the small side.

Another difficulty is that certain of the characteristic flow

quantitiesdonot.appear:explicltly in_theliteratureand must be

estimated from other data. These quantities_include_U, the charac-

teristic axial velocity component; Wp, the.characteristic velocity

of flow through the_porous walls; - 8, the absolute value of the

inlet axial pressure.gradient-for:steady flow; APD, the dialysate

pressure drop; and AP , the:±nlet across-membrane pressure differ -
m

ence.

To begin with, a better estimate_for the mean channel half-

(7)
thickness can be made. Cole, Pollard and Murray give the
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(1)
nominal membrane half-spacing as 0.0057 cm. Babb and Grimsrud

on the other hand, have determined that the ratio of the actual to

theoretical volume of a modified Kill blood flow channel is about

5'3. Hence, one would expect that a more reasonable mean channel

half-thickness h is given by

h - 5,3 x 0.057 cm.

- 0.030 cm.

In this analysis t however, a slightly conservative value of 0. 020cm

is actually used.

Next t estimates for certain of the characteristic flow quanti-

ties can be made. First t the characteristic axial velocity compo-

nent is given by the following Poiseuille flow relation:

U = 3 Qo
2 (2£) (2h) A.I

where Qo is the inlet flow rate, £ is the channel half-width, and

h is the unstressed channel half-thickness. (In our idealized mo-

del of the channel, the mean half-thickness will be the actual half-

thickness ) Now, according to Sparks (29)

Qo " inlet flow rate per flow channel
(four channels)

- 50 Cm>min
f_

Using this value for the quantity Qo and the values for the charac-

teristic dimensions

equation A,I that

£ and h given in Section 5.3, it is found from

cm
U = 1.56 /sec.
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Secondly, another Poiseuille relation (equation 4.9 can be

used to obtain - 8, the absolute value of the inlet axial pressure

gradient, in terms of known quantities:

3 UQo

- 8 = 2 (2£) h 3 4,9

It is found that

-8 = 3.28 x 102

(Since for values of the porosity parameter a small compared

to unity the blood flow pressure drop is given approximately by

-8L = 3.6 x 104 dyneS/cm2,

where L is the channel length, and since Cole, Pollard and Murray

observe the actual blood flow pressure drop to be 3*0 x 104

dynes/c m 2, in good agreement, the choice of half-thlckness h used

determining the quantity _ _can now be seen to be a good one,)in

Thirdly, the dlalysate pressure drop APD is not really known

for a dialysate flow channel composed of porous material. However,

it has been assumed that dlalysate flow viscous shear forces acting

on the channel walls are of the same magnitude as or less than vis- •

cous shear forces acting on these walls caused by the blood flow,

Hence, for values of the porosity parameter a small compared to

unity, it is reasonable to expect that

AP s = {_'(- L)

= _ (104) dyneS/c m 2
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where L is the channel length, given in Section 5.3 9 as 111 cmo

In this study a value of 5 x 10 4 dyneS/cm2 is actually used for the

quantity APDo

Fourthly, the characteristic across-membrane pressure differ-

ence, APm, can be calculated neglecttng normal vlscous stresses

from equation 5.19.

APm" Po " PVl+ APD* APos' 5.19

where Po is the Inlet blood pressure, PDI is the dlalysate pressure

at the dlalysate inlet t APD is the dialysate pressure drop_ and

Ap is the osmotic pressure difference across the membranes. Using
OS

the value for the pressure drop APD just given and the values for

the quantities Po, PDI andAPos presented in Section 5.3 it is found

that

6 dynes
APm = I°0 x I0 /cm 2.

Furtherp in the absence of an osmotic pressure, difference, a much

smaller value results:

APm = I.0 x 105 dyneS/c m 2

Finally_ the characteristic velocity of flow through the porous

walls_ Wp, can be determined from equation 5.19

Wp = m_ (APm) , 5,19

where _ is the membrane permeability_ m" is membrane thicknessj

and APm is the characteristic across-membrane pressure difference,
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(29)
Sparks gives the membrane permeabillty _ as

-l& cm4
- 5o5 x 10 / sec - dynes

And Wilcox, Freeman, Maher and Schreiner give the membrane thick-

ness m as

-3
m" - 9_9 X I0 cm.

Thus,

Wp - 5.5 x 10 -6 Cm/sec *

in the presence of a maximum osmotic pressure difference, while

-7 cm
W - 5.5 x 10 /sec

P

in the absence of such a pressure difference,

The former value: agrees well with that obtained by dividinhg

the maxiamum ultrafiltration rate in a Kolff kidney, 20 cm /min.

(29) (29)
, by the total membrane:area, 20,000 cm

3cm
20 /min x 1 mi___._n

20,000 z 60 sec.
- 17 x 10 6 Cm/sec"
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APPENDIX B

CHARACTERISTIC VALUES FOR THE NORMAL WALL DISPLACEMENT AND THE

WALL THICKNESS

Assuming the deflections of the channel walls can be treated by

a linear thln-plate theory, the maximum normal deflection of the

walls, no, if the walls are subjected to a uniform loading qo' is

(37)
given by 4

K qo (2£)
q = 3o

E m ._ B.I

where £ is the'channel half-width, E is Young's modulus for the

walls, m is wall thickness, and K is a constant which depends on

both the wall boundary conditions_and the ratio of_channel.(or wall)

length L to width 2_. In particular, for simply-supported boundary

conditions and the length-to-width ratio of this problem, Timoshenko

and Woinowsky - Krieger (34) give the constant K as

K = 0.142 .

Now, if the ratio of the maximum normal wall displacement n to
O

the unstressed channel half-thickness h(this ratio must be small)

-3

is taken to be 0.i (no - 2.0 x I0 cm.) and if the loading qo is

conservatively taken to be the inlet blood pressure P , equation
O

B.I becomes an equation which can be solved for the wall thickness

m; that is, equation B.I can be written

m _

10 K P (2£)
0

Eh . B.2
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The value of wall thickness m given by equation B.2 is that re-

quired to keep normal wall displacements smaller than the specified

fraction of the unstressed channel half-thlckness h. This is the

value of wall thickness to be used in this study ....For the given

value of the constant K and for the values of the. quantltles Po' 4,

E and h presented in Section 5,3, this wall thickness is found to be

mffi4.6cm.

Equation B.I, also, tacitly assumes that Poisson's ratio for

the walls is 0.3.
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APPENDIX C

A FURTHER NOTE ON THE RANGE OF VALIDITY OF THE SIMPLIFIED

EQUATIONS OF THIS STUDY

Berman's solution for the axial velocitycomponent u (2) can be

written in the form

u - (1 - a x) (1 - z ) + RB fl (z)

+ RB f2 (z) + C.I

where the notation of this study has been adopted and where the

functions fl,f2 describe higherordercorrections to

the zeroth-order solution. However, since

R B ffi R =

according to Section 5.4, equation C.I canbe expressed as

u ffi(I- = x) (i- z ) +(Ra) fl(l)

+ (Ra) f2Cz) +
C.2

Note that inertia effects are absent in the zeroth-order terms of

both equations C.I and C.2,_but appear in the first - and higher -

order corrections. Equation C.2, then, suggests a more general

condition for which axial inertia effects can be neglected and for

which the simplified equations of this study are valid:

R i=l < < I . c.3

Condition C.3 includes the situation for which axial inertia

forces can be neglected described in Section 5.4_as a special case.

This condltion, also, appears to be verified by the form of
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the solutions of the simplified equations of this study to first

order in the parameter R (for steady flow for which the velocity of

flow through the porous walls, Wp, is a constant). For example,

the axial velocity component u is given by

u = (i- _ x) (i- z ) + _i(_,z) +
C.4

where

gl (=' i) -

Hence, equation C.4 can be written

G1 (z) . c.5

(I a x) _(i _)2= - - + (R _) GI(_)
L

?

C.6.
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TWIN COILS

FIGURE 2. KOLFF KIDNEY (KULF)
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PARALLEL PLATES

FIGURE 3. KIIL KIDNEY (KEEL)
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EXTERIOR RIBBED PLATES
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NOTE: THE RIBS OF THE
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ARE NOT NECESSARILY

POSITIONED SYMMETRICALLY

FIGURE 4. CROSS-SECTION OF BLOOD CHANNEL IN TIIE KIlL KIDNEY

(FLOW IS INTO THE PAPER)
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BLOOD FLOW

DIALYSATE FLOW SPACI', _

MEMBRANES

FIGURE 5. CONE SUPPORTS OF LEONARD AND BLUEMLE.
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